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Thermal characteristics of slug flow in rectangular ducts
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Abstract—A rigorous solution is obtained for the temperature field and the Nusselt numbers in the fully developed thermal region
of rectangular ducts, in which a uniform velocity profile occurs (slug flow). The thermal boundary conditions T {(constant wall
temperature peripherally as well as axially), H1 (constant axial wall heat flux with a constant peripheral wall temperature) and
H2 (constant axial wall heat flux with uniform peripheral wall heat flux) are examined. The 2-D temperature distribution and the
Nusselt numbers are calculated as functions of the aspect ratio. The results, in terms of temperature profiles and Nusselt numbers,
are presented and discussed in tables and graphs, considering all the possible combinations of heated and adiabatic walls of the
rectangular cross section. © Elsevier, Paris.

fully developed thermal region / Nusselt number / slug flow / T, H1 and H2 boundary conditions / rectangular ducts

Résumé — Analyse thermique des conduits a section rectangulaire dans le cas d’un écoulement a distribution uniforme
des vitesses. Cet article présente une méthode analytique pour déterminer la distribution 2D de la température et les nombres de
Nusselt dans ia région thermique entiérement développée des conduits a section rectangulaire, ot un profil uniforme de vitesse
se produit. Les conditions aux limites de type T (température constante a la paroi aussi bien gu'axialement), H1 (flux de chaleur
axialement constant et température périphérique constante) et H2 (flux de chaleur axialement constant et flux de chaleur a la
paroi uniforme) ont été examinés. La distribution 2D de la temperature et les nombres de Nusseit sont calculés en fonction
du rapport entre les cOtés de la section rectangulaire. Les données sont présentées dans cet article sous forme de tableaux et
figures, et considérent toutes les combinaisons possibles de parois adiabatiques et chauffées qui peuvent caractériser un conduit
rectangulaire. © Elsevier, Paris.

région thermique entiérement développée / nombre de Nusselt / écoulement a distribution uniforme des vitesses / conditions aux
limites de type T, H1 et H2 / conduit rectangulaire

Nomenclature Ly dimensionless  heated  perimeter
length Ly /a
Nu  Nusselt number h Dy /K

a,b longer and shorter sides. respectively. ; / o

of the rectangular cross section. . ... m q thermal power per unit of length ... W-m
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Bn.m coefficients defined in equation (15) g H]U)mdl power per unit of area (heat W2
A L L0 Vo

c* function of the combination of heated . . . )

and adiabatic walls T(.) dimensionless fluid temperature

’ v fluid velocity ....... ... o o m-s~?

Ch.m coeflicients defined in equation (16) . . .
’ x,y,z dimensionless rectangular Cartesian

; i =1 pc~1
Cp fluid specific heat ................. Jkem K co-ordinates
Dy, hydraulic diameter of the duct
2ab/la+b) ... m
- . . Greek symbols
h heat transfer coeflicient............ Wm~2.K! 4
m.n  swmmation integer indices « fluid thermal diffusivity............ m2.s71
K fluid thermal conductivity ......... WL KL 3 aspect ratio b/a < 1 ;
Ly heated perimeter length ........... m 4 fluid density ... kgm™"
8(.)  fluid temperature ................. K
* olmorini@ing. unife.it £.m.¢ Cartesian co-ordinates............. m
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Subscripts

b bulk quantity

w quantity evaluated at the wall
0 inlet quantity

1. INTRODUCTION

Analysis of the heat transfer behaviour of newtonian
fluids in rectangular ducts is a topic of special
interest in compact heat exchangers. such as radiators
or condensers in air-conditioning units |1, 2]. The
theoretical analysis for rectangular geometry is morve
complex and rarer than in the case of circular pipe
flow. In fact, the investigation of rectangular ducts is
very complicated because it requires a two-dimeunsional
analysis. Generally. the thermal boundary conditions
are also complex because there are many possible ways
of imposing different temperatures or heat fluxes on the
four wetted sides. Hence a clear understanding of the
thermal boundary conditions is essential. Due to their
practical application, the most interesting boundary
conditions are the well-known T, H1 and H2 conditions
as defined by Shah and London [3].

For the T boundarv condition. the wall tempera-
ture is considered to be constant both peripherally and
axially. This situation occurs in many practical ap-
plications such as condensers. evaporators. automotive
radiators (having high liquid flow rates). with negligible
wall thermal resistance.

For non-circular ducts with corners or variable
peripheral curvature heated. for example. with an
electric resistance. all with negligible normal wall
thermal resistance. two cases may occur:

a) for highly conductive materials (e.g.. copper.
aluminium) the axial wall heat flux may be considered
to be constant with uniform peripheral wall temperature
(H1 boundary condition);

b) for very low conductive materials (c.g.. glass-
ceramic, teflon) with the duct having uniform wall
thickness, the axial wall heat flux can be fixed as
constant with a uniform peripheral wall heat flux (H2
boundary condition}.

Moreover, many different situations can be consid-
ered, assuming a particular condition for every side of
the rectangle. as described in Section 2.2 of the present
paper: in the literature. eight classic thermal versions
are proposed for the T. H1 and H2 problems.

For any boundary condition, extensive numerical,
analvtical and experimental studies have been carried
out both for laminar fully developed flow [4, 3] and for
slug flow [6]. as well as for the thermal entrance region
and for the thermal fully developed region in rectangular
ducts [7]. In particular. many authors have studied the
Leat transfer behaviour for the slug flow [8. 9, 10, 11,
12]. because this flow condition can be regarded as a

simplified model for the analysis of turbulent flow, of
laminar flow in the hydrodynamic entrance region of

a fluid with negligible Prandlt number, and of fully
developed laminar flow of a pseudoplastic fluid with a
ranishing power-law index. Moreover, slug flow forced
convection can describe a solid body moving. with good
thermal contact, through a heated sleeve.

The aim of this paper is the rigorous determination
of the temperature profile and the Nusselt numbers of a
fluid with uniform velocity profile through rectangular
ducts for the T. H1 and H2 boundary conditions. These
results enrich and complete the previous analysis in this

field.

2. BASIC EQUATIONS

2.1. Energy equation

Cemsider a steady laminar slug flow in the thermally
developed region of a rectangular duct with axially
unchanging cross-section. A Cartesian system of co-
ordinates £.7,¢ is assumed, with its origin in the left
bottom corner of the inlet rectangular cross section
(n along the short side b, ¢ perpendicular to the cross
section). The fluid has a uniformnr velocity V' and an
inlet temperature (¢ = 0). Under the assumption of
constant fluid propertics and neglecting axial thermal
conduction. natural convection. viscous dissipation and
internal energy sources, with rigid and non-porous duct
walls. the differential steady state energy equation may
be written as:
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In order to solve equation (1) an energy balance

between section ¢ and ¢ — d¢ gives the axial variation

of the fluid bulk temperature 6, for the boundary
conditions T. H1 and H2:
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where L; is the length of the heated rectangular
perimeter, f, is the wall temperature and ¢’ and ¢”
are the thermal power per unit of length and per unit
of arca respectively. imposed on the heated walls of the
rectangular duct.

In the fully developed thermal region of a heated
duct the temperature profile continues to change with
¢ but the ‘relative shape” G of the profile no longer
changes:

éaZ[GWAQ} oG 0 (3)
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Using equation (3) it is possible to demonstrate that,
in the thermal fully developed region. the following
ensues:
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It is appropriate to introduce the dimensionless co-
ordinates:

_¢
r=2

b
O<y<id=—;
a —y_a

a

0<z<y; (5)
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and using different dimensionless temperatures for the
three boundary conditions examined:
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Consequently, the dimensionless energy balance

equation is readily obtained in the following forms for
the T. H1 and H2 problems examined:

T FT . ar
(8:c2 W) = —¢" NuT(z.y) (T)
T FTY _ 1 7
(81_2 +a—y7> =5 v
T FT
(3? N W) = ¢* (H2)

where ¢* is Li(1+ 3)/(28%) and Lf, is Ly /a.

2.2. Thermal versions

In order to solve equation (7), one can remark that
¢* depends on the heated length of the rectangular
perimeter. and hence the energy equation for the T
and H2 problems changes if different temperatures or
heat fluxes are imposed on the four wetted sides of
the rectangular duct. In this paper the eight thermal
versions which in the literature have been proposed
for the T, H1 and H2 problems are considered; the
following nomenclature is usually assumed in the
analysis of rectangular ducts for the eight thermal
versions considered:

4 - four constant wall temperature (T, H1) or heated
(H2) sides;

3L — three constant wall temperature (T. H1) or
heated (H2) sides and one adiabatic short side;

3S - three constant wall temperature (T, HI1) or
heated (H2) sides and one adiabatic long side:
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2L - two constant wall temperature (T. H1) or
heated (H2) sides and two adiabatic short sides;

2S5 - two constant wall temperature (T. H1) or
heated (H2) sides and two adiabatic long sides:

2C - one short and one long constant wall tempera-
ture (T. H1) or heated (H2) sides (corner version):

1L - one constant wall temperature (T. H1) or
heated (H2) long side:

1S - one constant wall temperature (T. H1) or
heated (H2) short side.

2.3. The bulk temperature
and the Nusselt number

The knowledge of temperature distribution over
a cross section of the rectangular duct allows the
determination of the bulk temperature:

1 3
T.,:%/ / T(z.y)dedy (for T. HI and H2) (8)
2 Jo Jo

Finally, the Nusselt nuwmber can be obtained by
an energy balance on the heated perimeter of the
rectangular duct; its expression is:

dl
P .

L2
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where P is a generic point in the duct heated perimeter
(L), n is the normal direction of the heated wall and
d{ is an infinitesimal element of the heated perimeter.

3. ANALYTICAL SOLUTION

3.1. Finite-Integral transform method

The differential problem defined by equation (7).
subject to the boundary conditions specified for all the
thermal versions that have been considered. is linear
and its solution can be tackled by the finite-integral
transform technique.
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TABLE |
Coefficients dn; for the T and the H1 problem.

Version diz dac d3e dyy diy day dsy day
1L 0 1 0 1 1 {or 0) 0 (or 1) 0 (or 1) 1 (or 0)
1S 1 (or 0) 0 (or 1) 0 (or 1) 1 {or 0) 0 1 0 1
2L 0 1 0 1 1 0 1 0
25 1 0 1 0 0 1 0 1
2C 1 (or 0) 0 (or 1) 0 (or 1) 1 {(or 0) 1 {or 0) 0 {or 1) 0 (or 1) 1 (or 0)
3L 1 (or 0) 0 (or 1) 0 (or 1) 1 {or 0) 1 0 1 0
3S 1 0 1 0 1{or0) 0 {or 1) 0 (or 1) 1 {or 0)
4 1 0 1 0 1 0 1 0

In order to solve the temperature problem given TABLE Il

by equation (7) with the eigenfunction expansion
technique, the appropriate eigenvalue problem is taken
as:

dd; 2

4 + A Pin =0

deo, ,
di

do; .
di

. _[lifi=x
with 6“{51“2?4

dlzéi.n(o) + d2i

=0 (10)

d31¢z.n (6) + d41

where i is equal to z or y and n is the order of the
general eingevalue (A) and of the general eigenfunction
(#) that fulfils the Sturm-Liouville problem defined
by equation (10). The coefficients dn; depend on the
specified combination of heated and adiabatic walls,
imposed by the boundary conditions. With reference
to the eight thermal versions considered. the values
assumed by the constants da; are shown in table I for
the T and the H1 problems (it is easy to demonstrate
that for the T and the H1 problems the coefficients
dn; assume the same values) and in table IT for the H2
problem.

In heat conduction problems the infinite series of
eigenvalues \; ,, and the related eigenfunctions &, ., that
resolve equation (10) are used frequently and their
expressions can be found in all the textbooks on heat
conduction [13, 14].

For the sake of completeness, table IIT shows the
eigenvalues and the eigenfunctions generated by equa-
tion (10) for all the thermal versions considered of the T
and the H1 problems. In the same way one can find the
eigenvalues and the eigenfunctions for the H2 problem
in table IV.

Coefficients dn; for the H2 problem.

Version dix | doy | dse | daz | diy | doy | day | day

for any version 0 1 0] 1 0] 1 0 1

3.2. The T problem

If one knows the eigenvalues and the eigenfunctions
defined by the appropriate Sturm-Liouville problem
(equation (10)) for any T thermal version considered.
then by applying the method of separation of variables,
it is easy to demonstrate that equation (7) reads:

A+ A = Nunw (11)

hence the T problem admits a discrete spectrum of
Nusselt numbers that fulfil the differential problem
defined by equation (7).

It is interesting to notice that, for any Nusselt
number Nuy, .., defined by equation (11), one matched
temperature distribution exists which can be written as
follows:

Tn,m = T(ﬂfeyd\’ﬁn.m) =A q}x,rx ¢y‘m (12)

where A is an arbitrary constant.

It is simple to demonstrate that only in correspon-
dence of the first eigenvalues does the temperature
distribution not change its sign in the cross section of
the duct and hence it has an actual physical meaning.

Accordingly, it is possible to write that. for the T
problem, the temperature field turns out to be:

T(I.y) = 44451‘.1 ¢y,1 (13)
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5
o o | min?

for any version | n°7% cos(Ap.n) | cOS(Ay my)

32

Hence. the Nusselt numbers can be calculated as
follows:
2 2
)‘.r.l -+ /\y.l

c*

(14)

Nur =

Table Vshows the expressions assumed by ¢* and the
Nusselt numbers for all the different thermal versions of
the T problem considered here.

3.3. The H1 problem

By using the appropriate eigenfunctions defined
for any different thermal version of the H1 problem
(table III). the unknown temperature field is sought by
resorting to a double series:

oc o¢
T(;L-,y,z) = Tw(z) i Z Z Bn,.m, 5pr.n Qy.m (]5)
n=1m=1

In fact. the H1 boundary condition states that
the wall temperature Ty (z) is uniform on the heated
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TABLE il
Eigenvalues and eigenfunctions for the T and the H1 problems.
Version [ Af:.n /\5.771 Q:L'.n @y_m
! — —
1L n*n? (2m — l)zm cos{ Az nT) sin(Ay.my)
3 72
ST m-n .
18 (2n — 1)2—4~ sin{X; ) cos{Ay.my)
min?
2L n?n? —— e cos(Arn) sin(Ay.my)
n?n’“’
28 n’m? — sin(Az ) cos{ Ay my)
2 2
, P 2 T 5 T . . .
2C (2n — 1))—4— (2m — l)zﬁ sin(Az. 1) sin{Ay my)
3 .
LT m . .
3L (2n — 1)2—4— : sin{Az. 1) sin(Ay.my)
5 5 T
3S n27t“ (277), - l)zﬁ Sin(/\‘r.nl’) Sin(/\y.my)
m*n . .
4 nin? - sin{ Az n) sin{ Ay .my)
length of a rectangular perimeter and that it increases
TABLE IV e e with the loneitudinal di a1 T
Eigenvalues and eigenfunctions for the H2 problem. mearly with the ongltu. mal coordinate z 13]. T'hc
5 . temperature distribution is defined with the exception
Version A | Apm Don Dy of an additive constant if one determines the constants

B, . In order to obtain the solution to equation (7).
the first step consists of multiplying everv term of the
energy cquation by @, , &, ., and then integrating over
z. between (0 and 1, and over y. between 0 and 3. The
integrals appearing in this procedure can be easily and
patiently solved by the classic methods inasmuch as
the eigenfunctions quoted in fable III are very simple
trigonometric functions. After some algebra it is possible
to obtain the unknown coefficients for all the thermal
versions of the H1 problem examined. The coefficients
B, . of equation (13) are given in fable VL

Using equations (8)-(9) one can calculate the bulk
temperature and the Nusselt numbers for any version of
the H1 problem (table VII).

3.4. The H2 problem

The eigenfunctions quoted in table IV do not depend
on the thermal version of the H2 problemn considered.
The unknown temperature is sought by resorting to a
double series:

T(I‘y’g) = C(],[) -+ z Z Chnom cos(n‘!‘tm) cos <m§y>

n=1m=1 »

(16)

As is well known, the temperature distribution in
the H2 boundary conditions is defined apart from
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an additive constant {Coo). because no temperature
alue is given either on the boundary or in the cross
section. On the contrary. the Nusselt number, defined
by equation {9), depends on a temperature difference
and hence is univocally defined.

In order to obtain the solution o equation {7), one
can use the same method followed in the resclution of
the H1 problem, hearing in mind that, in the integration
by parts one must allow for the bowndary eouditions
that are not homogeneous {see Spiga and Morini {12]):

Ty _ (48 or| __ (1+8)
dr - 28 oz AN

] el (}?}
Ty _ (1+3) a | ReL) '
o B Y e == “sa
E 23 §y . 23

where the coefficients v~ depend on the thermal version
of the H2 problem considered and assume the value
( for adiabatic walls, +1 or —1 for heated walls {the
sign depending on the direction of the temperature
gradient). After some algebra it is possible to obtain the

TABLE V
The ¢” coefficients of equation (7) and Nusselt numbers for the T thermal prablem.
Version < Nur Version c* Nup
. 1+3 | r4s2+1) ”c 1/1+8\° (3 +1)
232 20+ 5 - 2 4 201+ 52
s 1+3 (8 +4) - (1+82+5) {3+ 4)
; 23 25(1+3) 232 20+ 2+ 5
or 13 (5% + 1) 2 A+ {1+23 {43 + 1)
2 (1+3) 232 2(1+3)(1+23)
" 1+8 | m?(5+1) . Ltfiiy 9+ 1)
’ 3 30+3 ’ g
unknown temperature distribution as a function of the
_ TABLEW ) v~ coefficients (Gao and Hartvert [11]):
The coefficients By i of equation (15},
Version|  Buam | Version Bum T(xy) = ::Llj;ﬂ (;,;2 - 1) m_fl.&vl.iﬂ ( 1. T+ ii)
T N : 43 3 25 \3 2
t T md x 7 nm(m? + 52 n?y : ;
: cE8) (1N w8 (1,
TSR UL B B L 1 \# 3 2 3787 28
ri3 nt mt nm{dm? + Fn?) (18)
o | 48 1 w3 1 :
T m? 7t nm{dn? 32 +m?) It can bo obsgerved that. in versions 1L, 2L, 18, and
1 1 163 1 25, the dimensionless temperature depends on only one
28 WA 4 T Py e co-ordinate y {1L. 2L} or z (18, 28). For version 4 the
. AT i iem;}gax‘atum profile s symunetric with respect to the
For all the versions Bpon = 0 if n and m are not odd. centre of the cross section, while in the other versions

the 2-D temperature profile is not svmmetric, due to
the houndary conditions. By applying its definition
{equation {9}}. the Nusselt munber veads as [12]:

6L
2)?2 {2 4+ ) = e — v vl

(19)

Nupg =

A+ U+~

4. RESULTS AND DISCUSSION

The previous results have been worked out on a PC
equipped with a 80486 processor. For the T and H2
problems the temperature distributions and hence the
Nusselt numbers can be caleulated easily by making a
simple spreadsheet. For the H1 problem by contrast,
the temperature distribution is sought by resorting to a
uniform convergent double series {(\quaﬁﬁn {}3 13- The
fast convergence of the double series is assured by the
third power of 7 and m in the denowinator of the B.,
coefliclents quoted in fable VI and makes the present
technique quite effective and luexpensive in terms of
computer time. It is interesting to note that the T
temperature distribution can he regarded as the first
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TABLE Vil
Nusselt numbers for the H1 problem.
Version Nuyi Version Nuyy
6
1L 6 2C i
1+ 8 )2 > > 1
128 (1 + ¢
8(1+5) Z Z n?m? (m? 4 32n?)

n=1.0dd m=1.0dd
p 6

18 1—6}3 3L L

128(1+3)(243) Z Z n?m? (4ﬂ12+32n2)
n=1.odd m=1.odd

6

oL : ¥23 38 L —

-+ L i
128(1+8)(28+1) Z Z n?m? (m2+432n2)
n=1,0dd m=1.,o0dd
12 6
28 e ! :
Y Y
dd m=1,0dd

term of the double series used to formulate the H1
temperature distribution:

T(l‘,y) - Bl,l gpz.l ¢y.1 (20)

where the arbitrary constant A of equation (13) is set
equal to the first coefficient Bq,1 determined for the H1
problem (table VI). In other words, this means that the
temperature distribution for the H1 boundary condition
is obtained by starting from the T distribution with the
addition of ‘remedial’ terms.

In figure 1 the dimensionless temperature distribu-
tions for a square duct with the four heated walls for
the T, H1 and H2 boundary conditions are quoted.

The temperature distribution around the duct
periphery is uniform for the T and H1 problems, whereas
for the H2 boundary condition the wall temperature
is strongly variable along the duct perimeter. In this
latter case the maximum wall temperature occurs at
the corners of the cross sectional duct and the minimum
wall temperature occurs at the midpoint of the long side
(figures 1 and 2) of the rectangular duct.

In figure 2 we show the dimensionless temperature
distributions for a rectangular duct with aspect ratio
3 = 0.25 and four heated walls (version 4). The aspect
ratio effect on the temperature distributions for the
three boundary conditions considered is evident; for the
H2 boundary condition one can observe that, for small
aspect ratio, the minimum wall temperature approaches
the minimum fluid temperature which occurs at the
centre of the rectangular duct. For the T and HI1
problems, it turns out that in the rectangular duct
with small aspect ratio the temperature distribution
experiences a strong decrease near the heated walls
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and an extended central core with low temperature.
Figure 2 shows how this effect is more evident for the
H1 problem that for the T boundary condition.

Figure 3 shows the dimensionless temperature pro-
files along the diagonal of a square duct for T and H1
boundary conditions (version 4). It can be seen that
the dimensionless temperature field for the T problem
presents an inflection point near the corners of the duct
walls. For the H1 boundary condition the wall temper-
ature is continuously ‘running away’ {7] from the bulk
temperature so that an inflection in the temperature
profile does not develop. For the same difference in both
the wall temperature and the bulk temperature. the
fluid temperature gradient at the wall is smaller for the
T boundary condition because of the inflection. Thus,
from equation (9) the Nusselt numbers are lower for the
T problem and higher for the H1 problem, as can be
ohserved in figure 4.

Figure 5 shows the modulus of the local dimension-
less temperature gradient (|VT]) on the cross section
(8 = 0.25, version 4) for the three boundary conditions
considered; one can see the different role played by the
duct’s corners on the 2D-field of the heat flux for the T.
H1 and H2 boundary conditions.

For the H2 problenm, since the corner temperature
is higher, the peripheral average wall temperature is
greater; this leads to a reduction of the H2 Nusselt
numbers with respect to the H1 and T boundary
conditions.

In figure 4 the Nusselt numbers are reported for the
T, H1 and H2 problems for slug flow and for fully
developed laminar profile {version 4); it is interesting
to notice that the trend of the Nusselt number as a
function of the aspect ratio is the same for slug flow and



Thermal characteristics of slug flow in rectangular ducts

Figure 1. Dimensionless temperature distributions in a square
duct with four sides heated (version 4) for the T, H1 and H2
problems.

for laminar fully developed velocity profile. To stress
the fundamental role played by the velocity distribution
on the thermal behaviour it is pointed out that. for
the slug flow. the H2 Nusselt numbers are nearly twice
the H2 Nusselt numbers for the fully developed profile.
The difference in the two values assumed by the Nusselt
numbers when 3 varies, for the H1 and H2 problems,
increases when the aspect ratio tends to zero because for
small aspect ratio the corner effect on the temperature
distribution becomes very strong. The Nusselt numbers
for the T and H1 problems are quoted in tables VIIT

T

U T
A \\\\“\EEEEEEE\%%%%%

Figure 2. Dimensionless temperature distributions in a rect-
angular duct (3 = 0.25) with four sides heated (version 4) for
the T, H1 and H2 problems.

and X respectively for the 1L, 2L, 18, 2S versions; in
tables X and XI the T and H1 Nusselt numbers are
compared with the numerical results given by Hartnett
and Kostic [10] for the 4, 3L. 38 and 2C versions;
it is interesting to notice how the numerical results
of Hartnett and Kostic are in good agreement with the
analytical solutions presented in this paper. The Nusselt
numbers for the H2 boundary conditions are quoted in
table XII and coincide with the values given by Gao and
Hartnett [11] and by Spiga and Morini [12].
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Figure 3. Dimensionless temperature profiles along the diag-
onal of a square duct with four sides heated (version 4) for
the T and H1 problems.

14
_ ~T: Shah and London [7]
12 A Laminar £d. HI1:Schmidt and Newell {4]
H2: Spiga and Morini {5]
10 | B
Slug flow i T,HL,H2: present paper
N 87N
u
6 N N H2
SO~ ———
——

4T T \\\\::‘__1:1_1_____
2 | H2
0+ : : ‘ : :

0 02 04 p 06 0.8 1

Figure 4. Nusselt numbers for the T, H1 and H2 problems for
slug and fully developed flow in a square duct (version 4) as
a function of the duct aspect ratio.

If the temperature distributions and the Nusselt
numbers for the 1L.2L, 1S and 2L versions of the H1
and H2 problems are compared, it will be found that
for such versions it is not possible to distinguish the H1
and H2 boundary conditions as is the case for a slab
or a circular duct. In other words. for slug flow in a
rectangular duct the boundary conditions H1 and H2
produce the same results only if no adjacent wall of
duct is heated. This fact is not true for a rectangular
duct where a laminar fully developed velocity profile
occurs, as it does in the rescarch carried out by Spiga
and Morini 5]. It is of interest to note that, using the
expressions quoted in table Vior the T Nusselt numbers,
the Nusselt number as a function of the aspect ratio
achieves a minimum for versions 1L, 2L 2C, 38 and
4. For the 1L version the Nusselt number is minimun
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Figure 5. The 2D-distribution of the local dimensionless
temperature gradient (|VT|) on the cross section of a

rectangular duct (3 = 0.25) with four sides heated for the T,
H1 and H2 problems.

when 73 is equal to (5/4)%° — 1 (8 = 0.118); for version
2L the aspect ratio 8 = 2%5 — 1 (0.4142) minimises the
Nusselt number. whereas for versions 2C and 4 the
Nusselt number is minimum for square ducts. Finally,
for version 3S. Nu reaches its minimum value when 3 is
equal to (5/18)%° — 1/6 (8 = 0.36). For the H1 problem
the Nusselt number achieves a minimum only for the
version 35S (3 = 0.34), while a value of the aspect ratio
that minimises the Nusselt number for any version of
the H2 problem does not exist.

5. CONCLUDING REMARKS

The paper contains an analytical study of heat
transfer to slug flow in the thermal fully developed
region of rectangular ducts. for the T. H1 and H2
boundary conditions. The 2-D temperature distribution
has been analytically determined for all the different
combinations of heated and adiabatic walls of practical
interest. The Nusselt numbers are accurately predicted
and compared with the results obtained numerically by
several authors.
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TABLE Vil TABLE iX
Nusselt numbers for the T problem. Nusselt numbers for the H1 problem.
Nup Num
38 1L 15 2L 2S 8 1L 1S 2L 28
1 12.337 12.337 9.870 9.870 1 3 6 6
0.9 11.012 13.881 9.402 10.447 0.9 3.158 2.842 6.316 5.684
0.8 9.760 15.901 8.992 11.240 0.8 3.333 2.667 6.667 5.333
0.7 8.592 18.620 8.650 12.358 0.7 3.529 2.471 7.059 4.941
2/3 8.225 19.739 8.554 12.830 2/3 3.6 2.4 7.2 4.8
0.6 7.526 22.412 8.339 13.982 0.6 3.75 2.25 7.5 4.5
0.5 6.580 27.964 8.225 16.449 0.5 1 2 8 4
0.4 3.781 36.659 8.178 20.444 0.4 4.286 1.714 8.571 3.429
1/3 5.346 45.647 8.225 24.674 1/3 4.5 1.5 9 3
0.3 5.163 51.752 8.275 27.584 0.3 4.615 1.385 9.231 2.769
1/4 4.935 64.152 8.389 33.557 1/4 4.8 1.2 9.6 24
0.2 4.770 83.069 8.554 42.768 0.2 5] 1 10 2
1/6 4.700 102.221 8.695 52.168 1/6 5.143 0.857 10.286 1.714
1/3 4.661 140.916 8.910 71.280 1/8 5.333 0.667 10.667 1.333
0.1 4.666 179.896 9.062 90.621 0.1 5453 0.545 10.909 1.091
1/16 4.717 297.540 9.325 149.205 1/16 5.647 0.353 11.294 0.706
0.05 4.747 376.220 9.423 188.462 .05 5.714 0.286 11.429 0.571
0 4.935 20 9.870 x 0 6 0 12 0
TABLE X
Comparison of the Nusselt numbers for the T problem with the numerical results in the literature.
Nur
4 3L 3S 2C¢
3 Hartnett Hartnett Hartnett Hartnett
and and and and
Kostic Kostic Kostic Kostic
i10] [10] [10] [10]
1 4.935 4.94 4.112 4,11 4.112 4.11 2.467 2.47
0.9 4.948 - 4.308 3.933 - 2.474
0.8 4.996 4.543 3.754 - 2.498 -
0.7 5.088 4.827 3.580 2.544
0.6 5.243 5.172 3.421 - 2.622
0.5 5.483 5.48 5.593 5.62 3.290 3.29 2.742 2.74
0.4 5.841 6.110 3.212 - 2.921 -
0.3 6.366 - 6.750 3.227 3.183
1/4 6.711 6.74 7.128 7.19 3.290 3.29 3.356 3.37
0.2 7.128 - 7.552 3.407 3.564
1/8 7.920 7.99 8.289 3.729 3.74 3.960 4.00
0.1 8.238 8.566 3.888 4.119
1/16 8777 - 9.016 4.193 4.23 4.388
0 9.870 9.87 9.870 9.87 1.935 4.94 4.935 4.94
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TA Xl
Comparison of the Nusselt numbers for the H} glr_sblem with the numerical results in the literature.
Nur
4 3L 3S 2¢
3 Hartnett Hartnett Hartnett Hartnett
and and and and
Kostic Kostic Kostic Kostie
[10] [10} [10] [10]
1 7.114 711 5.831 5.82 5.831 5.83 3.557 3.56
2/3 7.356 7.36 6.836 6.84 5.066 5.07 3.678 3.68
0.5 7.774 7.77 7.597 7.60 4.742 4.74 3.887 3.88
0.4 8.184 8.18 8173 8.17 4.621 4.62 4.092 4.09
1/3 8.545 8.55 8.620 8.63 4.597 1.60 4.272 4.27
1/4 9.116 9.12 9.263 9.27 4.664 1.66 4.558 4.56
0.2 9.535 9.54 9.702 9.70 1.774 4.77 4.768 4.77
1/6 9.851 9.86 10.021 10.03 4.883 4.88 4.926 4.93
1/8 10.292 10.30 10.451 10.46 5.065 5.06 5.146 5.15
0.1 10.584 10.58 10.728 10.728 5.201 5.20 5.202 5.29
1/12 11.066 11.07 11.172 11.18 5.449 5.46 5.533 5.54
0.05 11.239 11.24 11.328 11.34 5.544 5.54 5.619 5.62
0 12 12 12 } 12 6 6 6 6
TABLE XII
Nusselt numbers for the H2 problem.
Nuys
3 4 3L 3s 2C 2L 2S 1L 1S
1 6 4.5 4.5 3 G 6 3 3
0.9 6 i 4.421 3 6.316 5.684 3.158 2.842
0.8 6 4.667 4.333 3 6.667 5.333 3.333 2.667
0.7 6 4.765 4.235 3 7.059 4.941 3.529 2.471
2/3 6 4.8 4.2 3 7.2 1.8 3.6 2.4
0.6 6 1.875 4.125 3 7.5 4.5 3.750 2.250
0.5 6 5 4 3 8 4 4 2
0.4 6 5.143 3.857 3 8.571 3.429 4.286 1.714
1/3 6 5.250 3.750 3 9 3 4.5 1.5
0.3 6 5.308 3.692 3 9.231 2.769 4.615 1.385
1/4 6 5.4 3.6 3 9.6 2.4 4.8 1.2
0.2 5.5 3.5 3 10 2 3 1
1/6 6 5.571 3.429 3 10.286 1.714 5.143 0.857
1/8 6 5.667 3.333 3 10.667 1.333 5.333 0.667
0.1 6 5.727 3.273 3 10.909 1.091 5.455 0.545
1/16 5.824 3.176 3 11.294 0.706 5.647 0.353
0.05 5.857 3.143 3 11.429 0.571 5.714 0.286
0 6 3 3 12 0 6 0
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