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Abstract--A rigorous solution is obtained for the temperature field and the Nusselt numbers in the fully developed thermal region 
of rectangular ducts, in which a uniform velocity profile occurs (slug flow). The thermal boundary conditions T (constant wall 
temperature peripherally as well as axially), H1 (constant axial wall heat flux with a constant peripheral wall temperature) and 
H2 (constant axial wall heat flux with uniform peripheral wall heat flux) are examined. The 2-D temperature distribution and the 
Nusselt numbers are calculated as functions of the aspect ratio. The results, in terms of temperature profiles and Nusselt numbers, 
are presented and discussed in tables and graphs, considering all the possible combinations of heated and adiabatic walls of the 
rectangular cross section. © Elsevier, Paris. 

fully developed thermal region / Nusselt number / slug flow / T, HI and H2 boundary conditions / rectangular ducts 

R~surn~ - -  Analyse thermique des conduits ,~ section rectangulaire dans le cas d'un eco,,lement ,~ distribution uniforme 
des vitesses. Cet article pr~sente une m~thode analytique pour d~terminer la distribution 2D de la temperature et les hombres de 
Nusselt dans la region thermique enti~rement developp~e des conduits ~ section rectangulaire, o0 un profil uniforme de vitesse 
se produit. Les conditions aux limites de typeT  (temperature constante ~ la paroi aussi bien qu'axialement), HI (flux de chaleur 
axialement constant et temperature p~riph~rique constante) et H2 (flux de chaleur axialement constant et flux de chaleur a la 
paroi uniforme) ont ~te examines. La distribution 2D de la temperature et les nombres de Nusselt sont calcules en fonction 
du rapport entre les c6t~s de la section rectangulaire. Les donn~es sont pr~sent~es dans cet article sous forme de tableaux et 
figures, et considerent toutes les combinaisons possibles de parois adiabatiques et chauff~es qui peuvent caracteriser un conduit 
rectangulaire. © Elsevier, Paris. 

region thermique entierement developpee / hombre de Nusselt / ecoulement a distribution uniforme des vitesses / conditions aux 
limites de type T, H1 et H2 / conduit rectangulaire 
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Thermal characteristics of slug flow in rectangular ducts 

Subscripts 

b bulk quantity 
w quantity evahlated at the wall 
0 inlet quantity 

1. INTRODUCTION 

Analysis  of the heat  transfer behaviour of newtoifian 
fluids in rectangular  ducts  is a topic of special 
interest ill colnpact heat  exchangers, such as radiators  
or condensers in air-condit ioning units [1, 2]. The 
theoret ical  analysis for rectangular  geometry is more 
complex and rarer than in the case of circular pipe 
flow. In fact, the investigation of rectangular  ducts is 
very complicated because it requires a two-dimensional 
analysis. Generally, the thermal  boundary  conditions 
are also complex because there are many possible ways 
of imposing different tempera tures  or heat fuxes  on the 
fbur wetted sides. Hence a clear unders tanding of the 
thermal  boundary  conditions is essential. Due to their 
pract ical  appl icat iom the most interesting boundary  
conditions are the well-known T. H1 and H2 conditions 
as defined by Shah and London [3]. 

For the T boundary  condition, the wall ten@era- 
lure is considered to be constant  both  peripheral ly and 
axially. This s i tuat ion occurs in many pract ical  ap- 
plicat'ions such as condensers, evaporators,  automotive 
radia tors  (having high liquid flow rates), with negligible 
wall therlnal  resistance. 

For non-circular ducts with corners or variable 
per ipheral  curvature heated, for example,  with an 
electric resistance, all with negligible normal  wall 
thermal  resistance, two cases may occur: 

a) for highly conductive materials  (e.g.. copper. 
ahuniIfium) the axial wall heat flux may be considered 
to be constant  with uniform peripheral  wall t empera ture  
(H1 boundary  condition); 

b) for very low conductix~' mater ia ls  (e.g., glass- 
ceramic, teflon) with the duct having uniform wail 
thickness, the axial wall heat flux can be fixed as 
constant  with a mfiform peripheral  wall heat flux (H2 
boundary  condition). 

Moreover, many different s i tuat ions can be consid- 
ered, assulning a par t icular  condit ion ~br every side of 
the rectangle, as described in Section 2.2 of the present 
paper:  in the l i terature,  eight classic thermal  versions 
are proposed for the T. H1 an(t H2 problems. 

For any boundary  condition, extensive numerical,  
analyt ical  and exper imental  studies have been carried 
out both  fl)r laminar  fully developed flow [4, 5] and for 
slug flow [6], as well as for the thermal  entrance region 
and for the thermal  fully developed region in rectangular  
ducts [7]. In part icular ,  many authors have studied the 
heat transfer behaviour for the slug flow [8, 9. 10, 11, 
12], because this flow condition can be regarded as a 

simplified model  for the analysis of turbulent  flow, of 
laminar  flow in the hydrodynamic  entrance region of 
a fluid with negligible Prandl t  number,  and of fully 
developed laminar flow of a pseudoplast ic  fluid with a 
wmishing power-law index. Moreover, slug flow forced 
convcction can describe a solid body moving, with good 
thermal  contact,  through a heated sleeve. 

The aim of this paper  is the rigorous deternfination 
of the te inpera ture  profile and the Nusselt nulnbers of a 
fluid with uniform velocity profile through rectangular  
ducts  for the T. H1 and H2 boundary  conditions. These 
results enrich and complete the previous analysis ill this 
field. 

2. BASIC EQUATIONS 

2.1. Energy equation 

Consider a s teadv laminar  slug flow in the thermally  
developed region of a rectangular  duct  with axially 
unchanging cross-section. A Cartesian system of co- 
ordinates {, ~, ¢ is assumed, with its origin in the left 
bo t tom corner of ~he inlet rectangular  cross section 
(~/ along the short side b, ~ perpendicular  to the cross 
section). The fluid has a unitbrm velocity V and an 
inlet t empera tu re  00(¢ = 0). Under the assumption of 
constant  fluid propert ies  and neglecting axial thermal  
conduction, natura l  convection, viscous dissipation and 
internal energy sources, with rigid and non-porous duct 
walls, the differel~tial s teady s tate  energy equation nmy 
be wri t ten as: 

O~0 O~0 V O0 
-- (1) 

In order to solve equation ( l )  an energy balance 
between section ~ and ¢ -  d~ gives the axial variation 
of the fluid bulk tempera ture  0b for the boundary  
conditions T. H1 and H2: 

{ 00b _ hLh(0w--0' , ,)  (T); 
c)¢ p % V o b 

00,~ _ q' (HI) ;  
0( p c v V a b 

~0b _ q" Lh (H2) 
8¢ p cp V a b 

(2) 

where L]~ is the length of the heated rectangular  
perimeter,  0,,, is the wall t empera tu re  and q' and q" 
are tile thermal  power per unit of length and per unit 
of area respectively, imposed on the heated walls of the 
rectangular  duct.  

In the fully developed thermal  region of a. heated 
duct the t empera ture  profile continues to change with 

but  the ' relative shape '  G of the profile no longer 
changes: 

a [ 0 w - e l  _ a a _ 0  (3) 
a~ L ~ J  aC 
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Using equation (3) it is possible to demoustrate that, 
in the thermal fully developed region, the following 
e n s u e s :  

a0h 1 ao a0b ao (H1 and H2) (4) 
a¢" --  G O ¢  (T);  a¢  --  a¢  

It is appropriate to introduce tile dimensionless co- 
ordinates: 

~ b 
x = -  0 < x < l ;  y = -  0 _ < y < 3 = - ;  (5) 

(/ a a 

and using different dimensionless temperatures for the 
three boundary conditions examined: 

0w - 0 
T -  0 w - 0 0  (T); 

T - -  A ' ( 0 - 0 o )  (H1); 
q' 

T =  K ( 0 - 0 0 )  (H2) (6) 
q"Dh 

Consequently, the dimensionless energy balance 
equation is readily obtained in the following ~brms for 
the T, H1 and H2 problems exalnined: 

\ a .~  + av ~ ) = 73 

where c* is Lt~(1 +/3)/(2 3 2) and L~ is Lh/a. 

(7) 

2.2. Thermal  versions 

In order to solve equation (7), one can remark that  
c* depends on the heated length of the rectangular 
perimeter, and hence the energy equation for the T 
and H2 problems changes if different temperatures or 
heat fluxes are imposed on the four wetted sides of 
the rectangular duct. In this paper the eight thermal 
versions which in the literature have been proposed 
for tile T, H1 and H2 problems are considered; the 
following noinenclature is usually assumed in the 
analysis of rectangular ducts for tile eight thermal 
versions considered: 

4 four constant wall temperature (T, H1) or heated 
(H2) sides; 

3L three constant wall temperature (T, HI) or 
heated (H2) sides and one adiabatic short side; 

3S three constant wall temperature (T, H1) or 
heated (H2) sides and one adiabatic long side: 

2L two constant wall temperature (T, H1) or 
heated (H2) sides and two adiabatic short sides: 

2S two constant wall temperature (T, HI)  or 
heated (H2) sides and two adiabatic long sides; 

2C one short and one long constant wall tempera- 
ture (T, H1) or heated (H2) sides (corner version): 

1L one constant wall temperature (T, HI) or 
heated (H2) long side: 

1S one constant wall temperature (T, H1) or 
heated (H2) short side. 

2.3. The bulk temperature  
and the Nusselt number  

The knowledge of temperature distribution over 
a cross section of the rectangular duct allows tile 
determination of the bulk temperature: 

,L U Ti, = ~ T(x,y)  dxdy  (for T. H1 and H2) (8) 

Finally. tlle Nusselt number can be obtained by 
an energy balance oil the heated perimeter of the 
rectangular duct; its expression is: 

2 ~ r b  L ~  

1 
z~/r Zl H 1 ~- 

c*,3 (Tw - Tb); 
1 

NUll2 = (9) 

where P is a generic point in the duct heated perimeter 
(L~), n is the normal direction of the heated wall and 
dl is an infinitesimal element of tile heated perimeter. 

3. ANALYTICAL SOLUTION 

3.1. Finite-Integral t ransform method 

Tile differential problem defined by equation (7), 
subject to tile boundary conditions specified for all the 
thermal versions that have been considered, is linear 
and its solution can be tackled by the finite-integral 
transform technique. 
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TABLE I 
Coefficients dNi for the Tand the H1 problem. 

Version d~x d2~. d3:~. d4:,, dig d'~ u d3u d4~ 

1L 0 1 0 1 1 (or 0) 0 (or 1) 0 (or 1) 1 (or 0) 

1S 1 (or 0) 0 (or 1) 0 (or t) 1 (or 0) 0 1 0 1 

2L 0 1 0 1 1 0 1 0 

2S 1 0 1 0 0 1 0 1 

2C 1 (or 0) 0 (or 1) 0 (or l) 1 (or 0) 1 (or 0) 0 (or 1) 0 (or 1) 1 (or 0) 

3L 1 (or 0) 0 (or 1) 0 (or 1) 1 (or 0) 1 0 1 0 

3S 1 0 1 0 1 (or 0) 0 (or 1) 0 (or 1) 1 ( o r  0) 

4 1 0 1 0 1 0 1 0 

In order to solve the tempera ture  problem given 
by equation (7) with the eigenflmction expansion 
technique, the appropr ia te  eigenvalue problem is taken 
a s :  

with 

{ dq3i,n /~2 q5 
T + .,~ ~ , ~ = 0  

dl,qSi.n(O) q- d2i dqo~,,di o 

+ d4i ~ 6 

J" 1 i f i  = x  
5 = l ~ i f  i = y 

= 0  

0 

(lO) 

where i is equal to x or y and n is the order of the 
general eingevalue ()~) and of the general eigenfunction 
(~) tha t  fulfils the Sturm Liouville problem defined 
by equation (10). The coefficients d.~u depend on the 
specified combinat ion of heated and adiabat ic  walls, 
imposed by the boundary  conditions. Wi th  reference 
to the eight thermal  versions considered, the vahles 
assumed by the constants  dNi are shown in table I for 
the T and the H1 problems (it is easy to demonst ra te  
tha t  for the T and the H1 problems the coefficients 
dNi assume the same values) and in table H for the H2 
problem. 

In heat  conduction problems the infinite series of 
eigenvahles A<~, and the related eigenfunctions ~,,~ tha t  
resolve equation (10) are used frequently and their 
expressions can be found in all the textbooks on heat  
conduction [13, 14]. 

For the sake of completeness, table I I I  shows the 
eigenvalues and the eigenfunctions generated by equa- 
tion (10) for all the thermal  versions considered of the T 
aim the H1 problems. In the same way one can find the 
eigenvalues and the eigenfunctions for the H2 problem 
in table IV. 

TABLE II 
Coefficients dNi for the H2 problem. 

Version d ~  dz~: da, d4a, d~v d2y day d4y 

for any version (1 1 (1 1 0 1 0 1 

3 .2 .  T h e  T p r o b l e m  

If one knows the eigenvalues and the eigenflmctions 
defined by the appropr ia te  S turm Liouville problem 
(equation (10)) for any T thermal  version considered. 
then by applying the method of separat ion of variables, 
it. is easy to demonst ra te  tha t  equation (7) reads: 

+ = :v , ,  ...... ( u l  

hence the T problem admits  a discrete spect rum of 
Nusselt numbers tha t  flflfil the differentiM problem 
defined by equation (7). 

It is interest ing to notice that .  for any Nusselt 
number N u  ...... defined by equation (11), one matched 
tempera ture  dis t r ibut ion exists which can be wri t ten  as 
follows: 

T, ..... = T ( x , y , N u  ...... ) = A ¢P .... g,y .... (12) 

where A is an a rb i t ra ry  constant.  

It is simple to demonst ra te  tha t  only in correspon- 
dence of the first eigenvMues does the tempera ture  
dis t r ibut ion not change its sign in the cross section of 
the duct  and hence it has an actual  physical meaning. 

Accordingly, it is possible to write that .  for the T 
problem, the t empera tu re  field turns out to be: 

T(x,y) : .4 ~l~:c.1 ~y,1 (13) 
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\~rsion 

IL 

1S 

2L 

2S 

2(' 

3L 

:iS 

TABLE III 
Eigenvaluesand eigenfunctions for the Tand the HI problems• 

r~2~ 2 

~2  
( 2 n -  1)2~ - 

~ 2 ~ 2  

n 2 ~  2 

, g g  2 

( ~ - -  b - ]  

( ~  - 1 ) ~ "  

~ 2 ~ 2  

~ 2 ~ 2  

(2m 2 g'~ - 1 )  

? H 2 ~  2 

9 2 
"rlI 2 T[ 2 

,3 2 

17"~2 71:2 

/[2 
(2m - 1) 2 4 $7 2 

/ 7 t2~  2 

/ 9  

7"[ 2 

l (2m - 1)2432 

17~2~2 

I 

cos(5 ..... x) 

sin(A ..... m) 

eos(a .... x) 

sin(A ..... m) 

sin(k ...... x) 

sin(A ..... m) 

sin(A ...... x) 

sin(A ..... r) 

qi?~.m 

sin(Au.,,, ~t) 

sin(A,v,m y) 

cos(,%.,,V) 

sin(Au., Y) 

sin(Av,,,~//) 

sin(A:u.,,Y) 

sin(Av.,, y) 

TABLE IV 
Eigenvalues and eigenfunctions for the H2 problem. 

Version A~.. ~, ] A2 7q, rrl , . , 

m-'rt2 cos(X~,~,z) c o s ( ~ , ~ y )  for any version ~12~,~2 ~ . , 

Hence. the Nusselt nuInbers can be cak 'ulated as 
follows: 

2 
N Z t T  - -  t:2"1 ~- A9"1 ( ]~t )  

C* 

Table Vshows the expressions assunied by c* and the 
Nusselt numbers for all the different thermal  versions of 
the T problen~ coilsidered here. 

3.3.  T h e  H1 p r o b l e m  

By using the appropr ia te  eigenflmctions defined 
for any different thermal  version of the H1 problem 
(table 11_1"), tile unknown te lnpera ture  field is sought by 
resorting to a double series: 

r ( ~ . m , z ) = r , , , ( ~ ) - - ~  8 ....... # , , , # ~  ..... 
I*=5 m = l  

05) 

In fact. the HI boundary condit ion states tha t  
the wall t empera ture  7~,(z) is uniform oil the heated 

length of a rectangular  per imeter  and tha t  it increases 
linearly with the longitudinal  coordinate z 1,5]. The 
tempera ture  dis t r ibut ion is defined with the exception 
of an addit ive constant  if one determines tim constants  
B ....... In order to obtain the solution to equation (7), 
the first step consists of mult iplying every term of the 
energy equation by ~ ..... q5 .... and then inlegrat ing over 
a', between 0 and 1, and over y. between 0 and 3. The 
integrals appear ing in this procedure can be easily and 
pat ient ly  solved by the classic methods inasmuch as 
the eigelffunctions quoted in table III  are very simple 
t r igonometric  flmctkms. After some algebra it is possible 
to obta in  the unknowll coefficients £br all the thernial  
versions of the H1 problem exanfined. The coefficients 
B ........ of equation (15) are given in table I7. 

Using equations (8) (9) one can calculate the bulk 
tempera ture  and the Nusselt numbers for rely xm'rsion of 
tim H1 problem (table VII). 

3.4.  T h e  H 2  p r o b l e m  

The eigenflmctions quoted in table IV  do not depend 
on the thernlal  version of the H2 problem considered. 
Tile unknown tempera tu re  is sought by resorting to a 
double series: 

E E C ...... eos(, = !eost  ) 
i1=1 r n = l  

(16) 
As is well known, the t empera tu re  dis t r ibut ion in 

the H2 boundary  eonditions is defined apar t  from 
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‘TABLE VI 
-_ 

The coefficients &, lli of eauation 0%. 
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TABLE VII 
Nusselt numbers for the H1 problem. 

Version Null  i Version Null  1 

/1; 6 
1L 

1S 

2L 

2S 

6 

1 + ' 3  

6n  
1 + / 3  

12 
1 + 3 

12 3 
1 + ,2 

2C 

3L 

3S 

128 (1 + ,3) ~ i 
n2m2 (m2 + ,ran '~) 

7~=l,od<! ~ = l . o d d  

r~ 6 

oc ~o 

E 1 128 (i ~-i3) (2 --,~) nirn 2 (4rn 2 + j2r~2) 
n = l , o d d  m , = l . o d d  

lI 6 

± fi 1.os (1 + n) (2 3 + l) n ~  (~,~ + 4 ,ram) 
~ z = l . o d d  rr~=l.odd 

/,C 6 

64(1 + ~)2 
n2m 2 (rm + ,32n 2) 

n = l , o d d  m = l , o d d  

term of the double series used to fornmlate tile H1 
tempera ture  distr ibut ion:  

T(x,y) = Bi,i ~ x , 1  ~i~!J,l (20) 

where the a rb i t ra ry  constant  A of equation (13) is set 
equal to the first coefficient BIA determined for the H1 
problem (table V1). In other words, this means tha t  the 
t empera tu re  dis t r ibut ion for the H1 boundary  condit ion 
is obta ined by s tar t ing from the T dis t r ibut ion with the 
addi t ion of ' remedial '  terms. 

In figure 1 the dimensionless t empera tu re  distr ibu-  
tions for a square duct  with the four heated walls for 
the T, H1 and H2 boundary  conditions are quoted. 

The tempera ture  dis t r ibut ion around the duct  
per iphery is uniform for the T and H1 problems, whereas 
for the H2 boundary  condit ion the wall t empera ture  
is s trongly variable along tile duct  perimeter.  In this 
la t ter  case ti le maximum wall t empera ture  occurs at 
the corners of the cross sectional duct  and the minimmn 
wall t empera tu re  occurs at  the midpoint  of the long side 
(figures 1 and 2) of the rectangular  duct.  

In figure 2 we show the dimensionless t empera tu re  
dis t r ibut ions for a rectangular  duct  with aspect  rat io 
,~ = 0.25 and four heated walls (version 4). The aspect  
ratio effect on the tempera ture  dis tr ibut ions for the 
three boundary  conditions considered is evident; for the 
H2 boundary  condition one can observe that ,  for small 
aspect ratio, the minimum wall t empera ture  approaches 
the minimum fluid tempera ture  which occurs at, the 
centre of the rectangular  duct.  For the T and H1 
problems, it turns  out tha t  in the rectangular  duct 
with small  aspect  rat io the tempera ture  dis t r ibut ion 
experiences a strong decrease near the heated walls 
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and an extended central  core with low temperature .  
Figure 2 shows how this effect is more evident for the 
H1 problem tha t  for the T boundary  condition. 

Figure 3 shows tile dimensionless t empera ture  pro- 
files along tile diagonal  of a square duct  for T and H1 
boundary  conditions (version 4). It can be seen tha t  
the dimensionless t empera tu re  field for the T problem 
presents an inflection point  near the corners of the duct  
walls. For the H1 boundary  condit ion the wall temper-  
a ture  is continuously ;running away' [7] from the bulk 
tempera tnre  so tha t  an inflection in tile t empera ture  
profile does not develop. For the same difference in both 
the wall t empera tu re  and the bulk tempera ture ,  the 
fluid t empera ture  gradient  at the wall is smaller for the 
T boundary  condit ion because of the inflection. Thus, 
from equation (9) the Nusselt numbers are lower for the 
T problem and higher for the H1 problem, as can be 
observed in fignre~ ~. 

Fig'are 5 shows tile modulus of the local dimension- 
less t empera tu re  gradient  (IVTI) on the cross section 
(fl = 0.25, version 4) for the three boundary  conditions 
considered; one can see the different role played by the 
duct ' s  corners on the 2D-field of the heat flux for the T. 
H1 and H2 boundary  conditions. 

For the H2 problem, since the corner t empera ture  
is higher, the peripheral  average wall t empera ture  is 
greater; this leads to a reduction of the H2 Nusselt 
numbers with respect to tile H1 and T bomldary  
conditions. 

In figure ~ the Nusselt numbers are repor ted for the 
T, H1 and H2 problems for slug flow and for fully 
developed laminar profile (version 4); it is interesting 
to notice tha t  the t rend of tile Nusselt number as a 
flmction of the aspect  ratio is the same for slug flow and 
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Figure 1. Dimensionless temperature distributions inasquare 
duct with four sides heated (version 4) for the T, H1 and H2 
problems. 

Figure 2. Dimensionless temperature distributions in a rect- 
angular duct (/3 = 0.25) with four sides heated (version 4) for 
the T, H1 and H2 problems. 

for laminar fully developed velocity profile. To stress 
the flmdamentat role played by the velocity distribution 
on the thermal behaviour it is pointed out that. for 
the slug flow. the H2 Nusselt inunbers are nearly twice 
the H2 Nusselt numbers for the fully developed profile. 
The difference in the two values assumed by the Nusselt 
immbers when 3 varies, for the H1 and H2 problems, 
increases when the aspect ratio tends to zero because tbr 
small aspect ratio the corner effect on the temperature 
distribution becomes very strong. The Nusselt numbers 
for the T and H1 problems are quoted in tables VIII 

and IX respectively for the 1L, 2L, 1S. 2S versions; in 
tables X and XI  the T and H1 Nusselt numbers are 
compared with the immerical results given by Hartnett  
and Kostic [10] for the 4, 3L. 3S and 2C versions; 
it. is interesting to notice how the numerical results 
of Hartnett  and Kostic are in good agreelnent with the 
analytical sohltions presented in this paper. The Nusselt 
numbers for the H2 boundary conditions are quoted in 
table X H  and coincide with the values given by Gao and 
Hartnett [11] and by Spiga and Morini [12]• 
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Figure 3. Dimensionless temperature profiles along the diag- 
onal of a square duct with four sides heated (version 4) for 
the T and H1 problems. 
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/ -T: Shah and London [7] 
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Figure 4. Nusselt numbers for the T, H1 and H2 problems for 
slug and fully developed flow in a square duct (version 4) as 
a function of the duct aspect ratio. 

If the temperature distributions and the Nusselt 
numbers for the 1L,2L, IS and 2L versions of the H1 
and H2 problems are compared, it will be found that  
for such versions it is not possible to distinguish tile H1 
and H2 boundary conditions as is the case for a slab 
or a circular duet. In other words, for slug flow in a 
rectangular duct the boundary conditions H1 and H2 
produce the same results only if no adjacent wall of 
duct is heated. This fact is not true for a rectangular 
duct where a laminar fully developed velocity profile 
occurs, as it does in tile research carried out by Spiga 
and Morini 15]. It is of interest to note that,  using the 
expressions quoted in table V for the T Nusselt imn~bers, 
tile Nusselt number as a function of the aspect ratio 
achieves a minimum for w~rsions 1L, 2L 2C, 3S and 
4. For the 1L version the Nusselt number is minimum 
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H2 

Figure 5. The 2D-distribution of the local dimensionless 
temperature gradient ( I V T I )  on the cross section of a 
rectangular duct (;~ = 0.25)  with four sides heated for the T, 
H1 and H2 problems. 

when fl is equal to (5/4) °5 - 1 (,,3 = 0.118); for version 
2L tile aspect ratio 3 = 2 °5 - 1 (0.4142) minimises the 
Nusselt number, whereas for versions 2C and 4 the 
Nusselt number is minimum ior square duets. Finally, 
for version 3S, Nu reaches its mininmln value when ;3 is 
equal to (5/18) °: '  - 1/6 (3 - 0.36). For the H1 problem 
the Nusselt mnnber  achieves a minitnum only for the 
version 3S (3 = 0.34), while a value of the aspect ratio 
that ininimises the Nusselt mnnber  for any version of 
the H2 prolllem does not exist. 

5.  C O N C L U D I N G  R E M A R K S  

The paper contains an analytical study of heat 
transfer to shlg flow in tile thermal flflly developed 
region of rectangular ducts, for tile T. H1 and H2 
boundary conditions. The 2-D temperature distribution 
has been analytically determined for a l l  tile different 
combinations of heated and adiabatic walls of practical 
interest. The Nusselt numbers are accurately predicted 
and compared with the results obtained numerically by 
several authors. 
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TABLE VIII 
Nusselt numbers for the T problem. 

3 
1 

0.9 

0.8 

0.7 

2/3 8.225 19.739 

0.6 7.526 22.412 

0.5 6.580 27.964 

0.4 5.781 36.659 

1/3 5.346 =15.647 

0.3 5.163 51.752 

1/4 4.935 64.152 

0.2 4.770 83.069 

1/6 4.700 102.221 

1/8 4.66t 140.916 

0.1 4.666 179.896 

1/16 4.717 297.540 

0.05 4.747 376.220 

0 4.935 ,:x:~ 

N~T 
1L 1S 

12.337 12.337 

11.012 13.881 

9.760 15.9[)1 

8.592 18.620 

2L 

9.870 

9.402 

8.992 

8.650 

8.554 

8.389 

8.225 

8.178 

8.225 

8.275 

8.389 

8.55¢ 

8.695 

8.910 

9.062 

9.325 

9.123 

9.870 

2S 

9.870 

10.447 

11.240 

12.358 

12.830 

13.982 

16.449 

20.444 

24.674 

27.584 

33.557 

42.768 

52.168 

71.28[) 

90.621 

149.205 

188.462 

~ c  

TABLE IX 
Nusselt numbers for the H1 problem. 

2~Lt H 1 

3 1L 1S 2L 28 

1 3 3 6 6 

0.9 3.158 2.842 6.316 5.684 

0.8 3.333 2.667 6.667 5.333 

0.7 3.529 2.471 7.059 4.941 

2/3 3.6 2.4 7.2 4.8 

0.6 3.75 2.25 7.5 4.5 

o.5 i 2 8 4 

6.4 4.286 1.714 8.571 3.429 

1/3 4.5 1.5 9 3 

0.3 4.615 1.385 9.231 2.769 

1/4 4.8 1.2 9.6 2.4 

1).2 5 1 , 10 2 

t /6  5.143 0.857 10.286 1.714 

i / 8  5.333 0.667 10.667 1.333 

0.1 5.455 0.545 10.909 1.091 

1 / 16 5.6,17 0.353 11.294 0.706 

0.05 5.714 0.286 11.429 0.571 

0 6 0 12 0 

(U 

m 

~ m  

0 

3 

TABLE X 
Comparison of the Nusselt numbers for the T problem with the numerical results in the literature. 

NttT 

4 3L 3S 2C 

Hartnet t  Har tnet t  Hartnet t  Har tnet t  
and and and and 

Kostic Kost ic Kostic Kostic 
!10] [10] [10] [10] 

4.935 4.94 4.112 4.11 4.112 4.11 2.467 2.47 1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

1/4 
0.2 

1/8 
0.1 

1/16 

0 

3.933 2.474 4.948 4.308 

4.996 4.543 3.754 2.498 

5.088 4.827 3.58[) 2.5,14 

5.243 5.172 3.421 2.622 

5.483 5.48 5.593 5.62 3.290 3.29 2.742 2.74 

5.841 6.110 3.212 2.921 

6.366 6.750 ;3.227 3.183 

6.711 6.74 7.128 7.19 3.290 3.29 3.356 3.37 

7.128 7.552 :}.407 3.564 

7.920 7.99 8.289 3.729 3.74 3.960 4.00 

8.238 8.566 3.888 4.119 

8.777 9.016 ,1.193 4.23 4.388 

9.870 9.87 9.870 9.87 .i.935 4.94 4.9;35 4.94 

i z i  

 iiii!iiiii 
ii iiii 21'!! 
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TABLE XI 
Comparison of the Nusselt numbers for the H! problem with the numerical results in the literature. 

NUT 

:2 

1 

2 /3  

0.5 

0.4 

1/3 
1/4 
0.2 

1/6 

1/8 
0.1 

1/12 

0.05 

0 

7.114 

7.356 

7.774 

8.184 

8.545 

9.116 

9.535 

9.851 

H a r t n e t t  
and  

Kost ic  
[lO] 
7.11 

7.36 

7.77 

8.18 

8.55 

9.12 

9.54 

5,831 

9.86 

6.836 

7,597 

8.173 

8.620 

9.263 

9.702 

10.021 

H a r t n e t t  
aIld 

Kost ic  
[10i 

5.82 

6.84 

7.60 

8.17 

8.63 

9.27 

5.831 

12 ! 

5.066 

4.742 

4.621 

4,597 

4.664 

1,774 

4,883 

H a r t n e t t  
and  

Kost ic  
[10] 

5.83 

5.07 

4.74 

4.62 

4.60 

4.66 

4.77 

3.557 

3.678 

3.887 

4.092 

4.272 

4.558 

4.768 

4.926 

3L 

11.24 

12 

9.70 

10.03 

3S 

4.88 

2C 

H a r t n e t t  
311(1 

Kost ic  
[10] 

3.56 

3.68 

3.88 

4.09 

4.27 

4.56 

4.77 

4.93 

10.2(,)2 10.30 10.451 10.46 5,065 5.06 5.146 5.15 

10.584 10.58 10.728 10.728 5,201 5.20 5.292 5.29 

11.066 11.07 11.172 11.18 5,119 5.16 5.533 5.54 

11.2:39 11.328 11.34 5.54,1 5.54 5.619 5.62 

12 12 6 6 [ 6 6 

TABLE XII 
Nusselt numbers for the H2 problem. 

NttH~ 

3 
1 

0.9 

0.8 

0.7 

2/3 
0.6 

0.5 

0.4 

1/3  

0.3 

1/4 
0.2 

1/6 
1/8 
0.1 

1/16 
0.05 

4 3L 3S 

6 4.5 4.5 

6 4.579 4.421 

6 4.667 4.333 

6 4.765 4.235 

6 4.8 4.2 

6 4.875 4.125 

6 5 ,1 

6 5.113 3.857 

6 5.250 3.750 

6 5.308 3.692 

6 5.4 3.6 

6 5.5 3.5 

6 5.571 3.429 

6 5.667 3.333 

6 5.727 3.273 

6 5.82=1 3.176 

6 5.857 3.143 

6 6 3 

2C 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

2L 2S 1L 1S 

6 6 3 3 

6.316 5.684 3.158 2.842 

6.667 5.333 3.333 2.667 

7.059 3.529 4.941 2.471 

7.2 4.8 3.6 2.4 

7.5 4.5 3.750 2.250 

8 4 4 2 

8.571 3.429 4.286 1.714 

9 3 4.5 1.5 

9.231 2.769 4.615 1.385 

9.6 2.4 4.8 1.2 

10 2 5 1 

10.286 1.714 5.143 0.857 

10.667 1.333 5.333 0.667 

10.909 1.091 5.455 0.545 

11.294 0.706 5.647 0.353 

11.429 0.571 5.714 0.286 

12 0 6 0 
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